Contrôle n°2 Octobre 2012 Terminale S 2012-2013

Exercice 1

a)Soit g la fonction définie sur |R par g(x) = $-x^3 - 3x - 2$

Etudier les variations de g sur R et en déduire que l'équation g(x) = 0 n'a qu'une seule solution, notée α , dans \mathbb{R} . Encadrer α à 0,01 près.

Donner le signe de g sur [R.

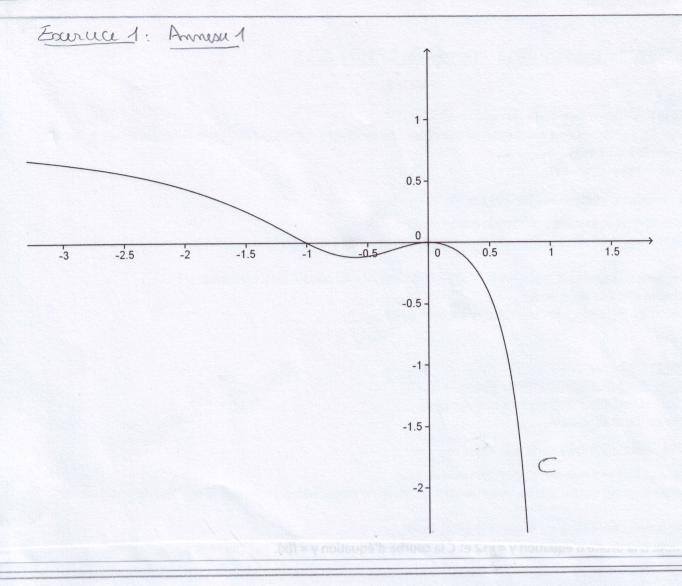
- b) Soit f la fonction définie sur]- ∞ ; 1[par f(x) = $\frac{x^3 + x^2}{x^3 1}$
 - 1) Calculer f'(x) et exprimer f'(x) en fonction de g(x).
 - 2) Déterminer les limites aux bornes ouvertes du domaine de définition et dresser le tableau de variations de f.
- c) On note C la courbe d'équation y = f(x) et Δ la tangente au point A de C d'abscisse -1.
 - 1) Donner une équation de Δ.
 - 2) Tracer sur l'annexe 1 les asymptotes ainsi que Δ.

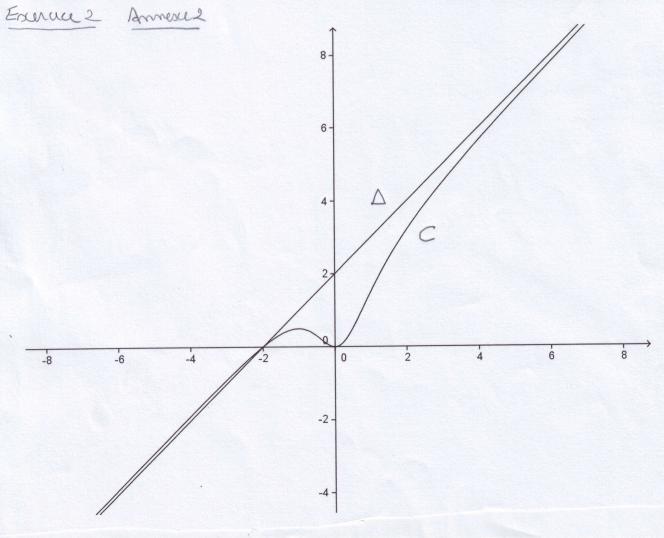
Exercice 2

a) Soit g la fonction définie sur \mathbb{R} par g(x) = $x^3 + 3x + 4$ Etudier les variations de g sur \mathbb{R} et calculer g(-1).

Donner le signe de g sur R.

- b) Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x^3 + 2x^2}{x^2 + 1}$
 - 1) Calculer f'(x) et exprimer f'(x) en fonction de g(x).
 - 2) Déterminer les limites aux bornes ouvertes du domaine de définition et dresser le tableau de variations de f.
- c) Soit d la fonction définie sur \mathbb{R} par d(x) = f(x) (x+2).


On note Δ la droite d'équation y = x+2 et C la courbe d'équation y = f(x).


- 1) Conjecturer à l'aide de l'annexe 2 le signe de d(x) ainsi que les limites en $+\infty$ et en $-\infty$ de d(x).
- 2) Démontrer les conjectures précédentes.

Exercice 3

Question de cours :

Soit $q \in]1$; $+\infty [$; démontrer que $\lim_{n\to\infty} (q^n) = +\infty$.

